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A Logical Description for Perfect Measurements'

Bob Coecke'? and Sonja Smets'®
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Wereconsider thedescription for property transitionsdueto perfect measurements,
viewing them as a special case of generd transitions that are due to an externally
imposed change. We propose a corresponding syntax involving operational
guantum logic and a fragment of noncommutative linear logic.

1. INTRODUCTION

In the spirit of Piron [7, 9, 10], Jauch and Piron [6], Aerts [12], Foulis
et al. [13], Foulis and Randall [14], Faure et al. [21], Moore [22, 27],
Amira et al. [24], and Coecke and Stubbe [25, 26], we will point out the
correspondence between the act of ‘inducing properties [24] and perfect
measurements [9], that is, a joint ideal measurement of the first kind of a
property and its orthocomplement. We describe the transitions that occur in
such aperfect measurement, and thiswill involve aspects of a gebraic quantum
logic [1, 3, 5, 7, 15] and linear logic [17, 18] in particular some of the
noncommutative variants[ 19, 20]. Indeed, since general not-necessarily deter-
ministic property transitions yield quantale descriptions [24, 26], whereas
noncommutative linear logic yields quantale semantical models, the formal
motivation for a logical description of perfect measurements incorporating
linear logical operations naturally arises.

In this paper, operational quantum logic (OQL) stands for the Geneva
school approach to states and properties of a physical entity; we will not go
into details and refer for the most recent overview to Moore [27]. The
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properties & of the entity are ordered by a—physically deducible—
implication relation, as such structured as a poset which proves to be meet-
complete as a semilattice [19], and as such aso complete as a lattice, the
joingiven by [l = {a e £|0i: a= a}. A property is said to be actual
if it istrue, i.e, any verification of it would yield a positive answer with
certainty, and a state is then defined as the strongest actual property an entity
possesses. We call a set of properties an actuality set if at least one property
in it is actual. Note that if A is an actuality set, we have immediately that
A = [, .aaisan actua property, and wewill refer to this ' strongest property
of which A implies actuality’ as a definite actual property of an actuality set.
As shown by Piron [7, 9], a complete lattice yields a representation as the
projection lattice of a‘generalized’ Hilbert spaceif and only if it is atomistic,
orthomodular, and satisfies the covering law, as such assuring a realization
within standard quantum theory. In this paper it suffices to require, besides
completeness, only orthomodularity of the lattice, the latter defined by (i)
thereexists 1: & - Zfulfillinga=b0 bt =at,aldal =0,alat =
1, att = a, and (ii) a = b impliesa O (a* O b) = b. In Section 2 we
show how the scheme developed in refs. 24—26 ‘lifts’ the Baer* -semigroups
considered as state transitions by Pool [8] —and introduced by Foulis [4]
as a natura collection of morphisms for orthomodular lattices that embeds
the closed orthogonal projections on this lattice—to more general classes of
morphisms that express indeterministic transitions. In Section 3 we translate
this into logical axioms, explicitly expressing that these transitions are due
to the interaction with an externally imposed context, and, in the particular
case of quantum measurements, a ‘ perfect measurement context’.

2. PROPAGATION OF PROPERTIES DUE TO A PERFECT
MEASUREMENT

Themaps P(¥) = {¢x £ - $:b—>al(bOal)|a e £} —the' Sasaki
[3] projections —prove to be the set of al closed orthogonal projections on
F,andareby 6: £ - P(£): a— @, inisomorphic correspondence with &£
when ordered by ¢, < ¢4 = @0a = @4 [4, 23] However, the maps ¢, are
not closed under their natural operation ‘ composition’, and should be consid-
eredasembeddedin ¥ (&) .= {f: £ - £|f(0 a) = 0 f(a)}, the corresponding
complete Baer*-semigroup: note that here F(¥) is itself a join-complete
lattice with respect to the pointwise computed order f = f' = Oa e &:
f(a) = f'(a), yieding a pointwise computable join for al { f}; C (&) as
Of: £ - £ a— [fi(a). However, the inclusion of P (&), with ordering
inherited from &£ through 6, in ($(£), 0) does not preserve the partia order.
Indeed, fora, @’ € Lwitha £at£#1landala =0wehavea=<al
a’, but since 0 < @4 @) = a and ¢ /(@) = a' it follows that ¢; O
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@ (@) = 0 and thus @,(@") £ @4 (@), S0 that ¢, £ ¢, athough
¢a < @ Instead of considering the closed orthogona projections P(&%),
we will consider (%) = {¢aatyla € £} with (P£ denotes the powerset
of L\{0})

Oaaly. PL - PL B {gib)b e B b % a'}
U {¢a(b)|b € B, b % a} D

The maps in P &) will be interpreted as describing the propagation of
properties in perfect measurements:

* A property b € & that is actual before the measurement yields an
actual property ¢,(b) or @,1(b) after it. In genera neither ¢4(b) nor ¢,1(b)
‘will be' actual with certainty after the measurement, provided that b % a
and b £ a‘. The strongest ‘definite actual property’ for the actuality set
{@a(b), @2 (D)} is @a(b) O ea(b). It has been motivated that actual properties
propagate preserving thejoin, assuch giving the mapsin ¥ (&) the significance
of describing the propagation of actual properties. Therefore, given an initial
actuality set, we consider them as describing the propagations of the definite
actual properties.

It is again natural to consider the maps ¢, '} as belonging to a more
general collection closed under composition, but due to the formal change
of domainfromthe CHattice & to the U-lattice P&, thisrequires an essentially
different approach. A construction that allows this embedment is proposed
in refs. 24—-26 and will now be applied to the maps defined by (1). The set
PH L) is canonically in surjective correspondence with (£) and thus with
Zitself by ¢: P(L) - PHL): @at+> ¢raaty that factorizesin

0P P(F) - PP(L): ar> [PL — PL: B> {@u)|b € B, b £ a'}]
{'ﬂi PL) — PHL): 6%(@a) — 67(9a) U 07(¢a)

2

where PP(<) isimplicitly defined astherange of 6°. Thefollowing isobvious.

5 Proposition 1. (i) ¢aaly = Pratatly; (i) dea) = dlep) = b € {a,
a‘t}.

Thus, P#(£), P(£)/~, and £/~ are in bijective correspondence for the
equivaence relation ¢, ~ @, (respectively a ~ b) iff b € {a, at}. Clearly,
the ordering of (P(¥), <) isin no way inherited by %*(&¥). However, as we
will show next, the maps in ##(£) can be considered as incomparable with
respect to the partial ordering inherited from (¥(¥), =). For mapsf: P¥ -
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P%, denote the condition A, B € P¥: A = B O [f(A) = [f(B) as A”,
and define the following subset of ¥(PX):

OHL) 1= {f: PE - [f (U; &) = U; f(a), f meets A} 3)

Asshown in refs. 24-26, it is exactly the condition A* that forces the definite
actual properties to propagate preserving the join. We will now sketch how
this connection between Q*(¥) and ¥(¥) is realized. Set

0P H(L) - SOL): T [PF — PL: B {f0) be B} (@)

Recadll that a quantale [16] is ajoin-complete lattice equipped with an opera-
tion o that distributes at both sides over arbitrary joins. Quantale morphisms
preserve o and al joins. The following proposition can be found in Coecke
and Stubbe [25, 26].

Proposition 2. The set P¥P(¥) = {U;0P(f)| Di: f; € P(£)} defines a
strict subquantale of (24(£), U, ©), where U denotes pointwisely computed
unions and o composition. Moreover, the map \/[—]: 24¥) - F(£): f —
[£- £:a— OF({a})] is a surjective quantale morphism.

Clearly P%(&%) < PP(¥), which is closed under composition, and
since P4 &£) - 2% ), the corresponding definite actual properties propagate
preserving the join. Indeed, given the union-preserving map ¢;,a'}, the map
describing the propagation of definite actua properties is the join-preserving
map eaaly]: L - £Lib— @a(b) O ea(b). The following scheme summa-
rizes all the above situating ?(¥) and (&) relative to P#(£) and 24(¥):

¢ & PE) = (F(F), 0 o)
Kz < HA (5)
PHEL) = (PFL), U, ) = (24F), U, °) = (H(PL), U, °)

We will now apply the above to the physical situation where aphysical entity
is placed in a measurement context that induces a perfect measurement.
Recdl that a, b € & are compatible if the Boolean sublattice generated by
{a, a*, b, b'} distributes.

Definition 1. Aninduction on a physical entity is an externally imposed
change of properties. A perfect measurement induction, characterized by a
pair {a, at}, is an induction such that after it the property a is actual ‘or’
the property a* isactual, and any property b which is compatible with a—and
as such also with at—that is actual before is still actual afterward.

Using (1), Proposition 1, and Theorem 4.3 of ref. 9, p. 69, one obtains:
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Proposition 3. Given a perfect measurement induction of {a, a*} on an
entity with property lattice &, the map @aat): P£ — P£ describes the
propagation of actuality sets.

Clearly, these perfect measurement inductions can be interpreted as a
minimal disturbance of the entity assuring actuality of a ‘or’ at. The essence
of thisremark boils down to theuse of ‘or’, which in this caseisadigunction
expressing what we could call inner nondeterminism:

* Indeed, crucia in the notion of a perfect measurement induction is
that we express how two properties both have an ability ‘to be’ actual in
case we are going to perform the induction. This aspect forces us to consider
unions of transitions and underlying actuality sets, i.e., considering maps in
9#(F) rather than in F(&£).

3. ALOGICAL DESCRIPTION FOR PERFECT
MEASUREMENTS

In this section we give logical axioms for the propagation of properties,
more precisely, of actuality sets, in perfect measurements—i.e., the maps
above described by 2#(f) and their finite compositions—explicitly express-
ing that the measurement process is a nondeterministic transition due to
interaction with an externally imposed context [e.g., 11]. A detailed descrip-
tion of the logica language, containing the elementary and well-formed
formulas linked to physical entities, and sequent calculus for describing
property transitions in general is elaborated on in ref. 28. In this paper we
stick to acombination of afragment of noncommutative linear logic and OQL.
We will need some of the Left and Right sequent rules of noncommutative
intuitionistic linear logic NCIL as defined in ref. 19, extended to a predi-
cate calculus:

(d):=AFA () := A T2AISFA

[,[THA
. IuFA ToiB _ _TiLABIA
(®,R): A ® B (®,1): I',(A® B),I,FA
_THA __ItB
(®, R = I'HA ® B) (®, R2) = I'HA ® B)
@, 1) = [LATFA Ty, BIFA

T'(A® B)[,FA
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ATI'+B I'FAT,BI'FA
—0 R : —_— —0 L :
( ' ) I'FA— B ( ’ ) Fl,r,(A —0 B),rzl_A
. TrA . _ T',AlyIx,I'F B
(0,R) := TFOA (x not freein ') (4, L) := —Fl,DxA,FZFB

We express the properties in £,\{0} for physical entity r as property
terms (constantsand variables) in our logical language. Wewill limit ourselves
to the following primitive propositions:

In,(X) := x isactual for physical entity r
R.(X) := x and only x is reachable for physical entity r
M, (X, x*) := xor x* will be induced on physical entity r

whereformulaM,(x, x*) should be thought of asrepresenting the measurement
context imposed on the entity in order to induce properties, and thus stands
for the ‘induction’ itself.

Given the fact that we work with OQL yielding an additional structure
for our property terms within the considered fragment of noncommutative
linear logic, we add the axioms which show essential OQL features:

Qyex [IN)] F In(CX)  In(X) = In(x Oy)

All the following axioms express the content of an arbitrary map
Praay € PH(£) by considering (1) and incorporate explicitly the role of the
induction context:

Trans: UyUz: In(y) ® R(2) — In(eAy)) @ R (oA Y))
Adjustl: OxOy { #£x, £x{: Mi(x, x1) ® [In, () @ R(y)] — In.(y)

® (R(¥) © R(x))
Adjust2: OxOy = x: M(x, x*) @ [In(y) @ R(y)] — In(y) @ R(Yy)

The first axiom Trans expresses the induction of one reachable property
according to the Sasaki projection. The second axiom Ajustl expresses a
readjustment of the entity relative to the imposed induction context. In other
words, it expresses the act of imposing the induction context M,(x, x*) on
the entity r consisting of an actual and reachable property.

Consider in the following application an initia situation M(b, b*) ®
[In(a) ® R(a)] of a physica entity with actual property a, assuming that
b £ aand b £ at, we drop the subscript r since we consider only one
physical entity. Note that we use not only the expression of the current
property which is actual for the entity, but also the fact that this same property
is reachable for the entity. It is now our aim to express the fact that the entity
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with property a will end up with actually having one of the possible properties
b or b+ which are reachable according to the given induction:

M(b, b*) ® [In(a) ® R(@)] - [In(¢n(a)) © Ren(@))]
® [In(ept () © Rl (a))] (6)

Thisisindeed an expression in our fragment of noncommutative linear logic
and OQL which is provable according to the following subproofs, which we
can establish using our axioms and logica tools:

1. We need to adjust our entity to the given measurement context (update
R, given M), using Adjustl. We need the elimination of the universal quantifier
twice, and modus ponens ‘A, A— B+ B':

M(b, b*) ® [In(a) ® R(@)] F In(a) ® (R(b) ® R(b*)) (7
2. Using distributivity of ® over &,* we obtain
In(@ ® (R(b) ® RbY)) F [In(a) ® RB)] ® [In@@ @ RG]  (8)

3. Using the axiom Trans, the elimination of the universal quantifier twice,
and modus ponens, we obtain

In(a) ® R(b) - In(ep(a)) @ Ren(@)) (9)

4. Using the axiom Trans, the elimination of the universal quantifier twice,
and modus ponens, we find

In(a) ® R(b*) k= In(ep* (3)) ® R(¢s(a)) (10)

Finally, by the previous subproofs we obtain our goal, i.e., (6).

Some additional remarks

(i) Inour formalism we can perform asuccession of inductions. Referring

back to (1), we can rediscover ¢rcctyeippti{@}) = {@c(en(@), ect(9p(a)),
oop* (@), @ct(9pt(a))} as, for those ¢ that satisfy it,

M(c, ¢*) @ ([In(¢s(a)) ® Rien(@))]  [In(¢p-(a)) © R(es-(a))])

+ [In(ec(ep(a))) @ Rloc(en(@)))] @ [In(ect(en(a))) @ Riec(en(a)))]

D [IN(ec(ep*(A)) @ Rec(en(2))] D [IN(@c(9p+(2))) @ R(ec (064 ()))]
Remark  that M (c, ¢') @ ([In(ep(a)) ® Rlgp(@)] © [In(ept(a)) ®
R(¢pL(a))]) could also have been expressed by M(c, ct) ® (M(b, bt) &

4See Abrusci [19], in Definition 2.1, “(X, =, 1, 1, T, ®, &, @, --o, --) is a noncommutative
intuitionistic linear structure iff ... (xvii) Ox € XOye XOze X zQ (xDy) = (zQ@ x) ©
z®y).
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[In(a) ® R(a)]), which points to the fact that we have to restrict associativity
for the multiplicative conjunction.

(ii) This logical description generalizes to al transitions of properties
described in 94(F). Set

IND,(a):= The physical entity r is placed within the context inducing
propagation a where a takes values f: P¥ - P¥ in 9%(%), and set K; =
{a e ¥|f({a}) = B}. The following axiom expresses the content of the maps
in 24(%):

General Propagation: Oalx ¢ K, IND(a) & In(X) — D) IMi(2)

yielding formal implementation of A as IND,(a) ® In,(CIX) —e In,(Co(X))
implicity for a(X) # 0. We recover the combined axioms Trans, Adjustl,
and Adjust2 for a particular ¢y, as

Ox: INDi(@gyyty) @ IN(X) —° Dzc oy tyq) M2
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